An Abstract Interface for Cyber-Defense Mechanisms

Franklin Webber
BBN Technologies

fwebber@bbn.com

Paul Rubel
BBN Technologies

prubel@bbn.com

ABSTRACT

Defending a computer system against malicious attack de-
pends on making many different defense mechanisms work
together. In addition to protecting against intrusions, these
mechanisms should provide intrusion detection and response.
The semantics of input and output for these mechanisms —
what the alert from an intrusion detector means, and the
implications of issuing a command in response — can vary
greatly from one mechanism to another. In this paper, we
discuss the abstract interface we have developed for inte-
grating various defense mechanisms to defend a distributed
application. Our interface is more than an API: it defines
not only the syntax of communication with defense mecha-
nisms but also its meaning, thus allowing us to reason sys-
tematically about the state of attack and defense. We briefly
describe our current work toward automating that reasoning
and thus toward applications that defend themselves intel-
ligently and automatically. We also argue that reasoning
about attack and defense at an abstract level allows one to
model and analyze whether the defense is effective.

1. BACKGROUND

Cyber-defense combines protection, detection and response.
One protects a system by eliminating vulnerabilities that an
attacker can exploit. While protection of a computer system
must always be the first line of defense, experience suggests
that it is never perfect and therefore one should not rely
on it to the exclusion of other defense mechanisms [1]. One
should always prepare to detect and respond to any attack
that succeeds in circumventing a system’s protection.

Intrusion detectors [3] observe and report symptoms of an
attack, ideally while the attack is still in progress. Detec-
tors take many forms, from generic tools such as Snort [5]
to monitors tightly coupled to a particular application. A
report sent by an intrusion detector is often called an alert.
Tools exist to collect and classify alerts to help system ad-
ministrators understand the progress of an attack [4].

Partha Pal
BBN Technologies
ppal@bbn.com

Michael Atighetchi
BBN Technologies
matighet@bbn.com

A good defense reacts to intrusions by containing them
and, if possible, undoing their damage and protecting against
similar attacks in the future. Because an automated at-
tack can propagate quickly throughout a vulnerable system,
intrusion response depends on designing the system with
enough redundancy that it can continue operating, perhaps
in a degraded mode, while the defense reacts [8].

We have instrumented several systems with cyber-defenses
of the kind described above. Our most recent work defended
a distributed publish/subscribe application for the US mil-
itary [2]. Our defenses were tested in numerous attacks by
several professional Red Teams acting with few constraints;
the defenses offered significant resistance to attack and are
likely the current high-water mark in cyber-defense.

Our experience with trying to understand and reuse cyber-
defenses has been the motivation for the abstract interface
described in this paper.

2. ABSTRACT MODEL

To make a set of defense mechanisms work together well,
one should begin with an abstract model in which the prop-
erties of each defense mechanism can be described. We begin
with a model of cyber-defense as a control loop. As shown in
Figure 1, the system being defended sends inputs to a con-
troller, which then interprets the inputs to understand the
progress an attacker is making and decides on a response,
which results in outputs to the system to make changes or
to collect more information.

controller
input output
translator translator
and filter
alerts, reports commands

system

Figure 1: control loop for defense

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies The figure also shows a translation and filtering step at
bear this notice and the full citation on the first page. To copy otherwise, t0 the interface to the controller: inputs are translated into a
republish, to post on servers or to redistribute to lists, requires prior specific abstract form for the controller, redundant inputs are re-

. e, :
permission and/or a fee moved, and outputs from the controller in an abstract form

CSIIRW '08, May 12-140ak Ridge, Tennessee, USA . . .
Copyright 2008 ACM 978-1-60558-098-2/08/05 ...$5.00. are translated into commands to the system. This section

describes the abstract form used by the controller.

Note that the distinction in the figure between the system
and its controller is conceptual only: the implementation
of the controller must in fact be part of the system being
defended.

2.1 Controller Inputs

Inputs to the controller are of two kinds:

1. reports of anomalous events, each of which is an alert
from some intrusion detector;

2. reports of expected system activity.

We need an abstract form for these inputs to solve the
following problems:

e Intrusion detectors can produce a lot of data. Even a
system that is not under attack can generate a huge
volume of reports about its activity. Without reducing
this volume, the controller may be overwhelmed.

e An attacker might easily flood the controller with fake
data in an attempt to overwhelm and disable it.

e Intrusion detectors commonly produce false positives,
i.e., inaccurate alerts that an attack is underway even
when it isn’t. In general, the information content of
reports sent to the controller will be highly variable,
with some reports being nearly certain and others be-
ing nearly worthless.

e An attacker might easily send fake data to the con-
troller, i.e., intentionally inaccurate alerts about an
attack being underway, in an attempt to cause the de-
fense to make bad responses (“spoofing”).

2.1.1 Accusations

We treat every anomalous event as an accusation: system
component C' claims that component A behaved badly when
interacting with component B. In most cases B and C will
be the same component, which is reporting on unexpected
behavior by A. Figure 2 shows the general case.

controller

accusation

C': accuser

observation

A: accused B: target

possible attack

Figure 2: accusations

Accusations differ according to the kind of anomalous be-
havior observed. The two main categories are:

1. commission failure: the accused component sent
data that does not conform to any expected commu-
nication protocol;

2. omission failure: data expected from the accused
component did not arrive.

Special cases of (1) include: timing: in a real-time sys-
tem, valid data arrived at the wrong time; policy: in a se-
cure system, the accused attempted an unauthorized action;
flooding: the accused is sending data much too fast.

The information content of an accusation determines how
the controller should handle it. First, only accusations whose
source is known with near-certainty should be kept. Usually,
this means every accusation must have a recognized digital
signature or be transmitted via a trustworthy VPN. An ac-
cusation whose source is not known could easily have been
faked by an attacker and so carries little useful informa-
tion; it means merely that an attack is going on somewhere.
Second, an accusation that carries its own proof contains
more information than one without proof. Proof would be
an invalid message signed by the accused, which proves that
the accused was corrupt at some time. Without proof, the
accusation means that either the accusation is true or the
accuser is corrupt and is possibly lying under the control
of an attacker. Third, repeated accusations carry little new
information other than a timestamp (which is of doubtful
value if generated by the accuser, who might be corrupt).

2.1.2 Evidence

Although accusations are the primary data used by the
controller to interpret the progress of an attack, more infor-
mation may be needed. This additional information comes
from reports of normal operation of the system, which we
refer to as evidence.

So far, we have found need for two kinds of evidence:

e communication: a report by component X that an
expected message arrived from Y. Communication ev-
idence is needed to resolve uncertainty about which
network components are still working. One possible
interpretation of an omission accusation is that some
network component is dead; communication evidence
can rule out some of these possibilities.

e mission status: a report by component X that com-
ponent Y has entered a new phase of the mission in
which certain responses should or should not be ap-
plied to Y. For example, in some situations, ¥ should
not be quarantined because its role in the mission is
critical. Often X = Y, i.e., a component reports its
own status.

Evidence is like accusations in that: it has little useful
information if the source is not known; it is always possi-
ble that the source of the evidence is corrupt and is lying;
and repeated evidence carries little new information. These
properties of every input solve the problems listed at the
beginning of this section: inputs arrive in an abstract form,
thus reducing the volume of data; an attempt to flood the
controller with valid inputs will be noticed immediately; be-
cause the meaning of the inputs is defined, reasoning about
false positives and spoofing is made possible, and Section 3
will describe how that reasoning reduces false positives and
spoofing.

2.2 Controller Outputs

Outputs from the controller should be at the same ab-
stract level as the inputs. This means that if an (abstract)
output has its intended effect on the system, then its effect
on future (abstract) inputs can be predicted.

We have so far concentrated on the kinds of output on the
following list:

e reset: return a component to its initial state;
e refresh: return a component to a checkpointed state;

e quarantine: block a component’s interaction with the
rest of the system,;

e reintegrate: reverse a quarantine, unblocking a com-
ponent;

e ping: test liveness of a component and intermediate
network components.

The effect of reset and refresh of X is to undo corruption,
assuming that X was not corrupt in the state it is returned
to. The effect of quarantine of X is to prevent an intrusion
from spreading from X but also to cause new accusations
that X is dead. The effect of a ping of X is to cause a reply
that will become new communication evidence.

3. REASONING ABOUT ATTACK
AND DEFENSE

The reasoning done by the controller, whether it is a hu-
man system administrator or a computer program, divides
naturally into two phases:

1. Input Interpretation, in which the controller seeks a
good explanation for its inputs by answering the ques-
tions: which components are corrupt? which are dead?
which are flooded? We summarize below how we have
automated the search for good explanations.

2. Output Selection, in which the controller uses its best
explanation of the inputs to choose a response that is
likely to counter the attack. We have automated this
choice as a set of rules that “fire” when components
are corrupt, dead, or flooded, and a set of rankings
that prioritize the rules that “fire”, using knowledge of
responses that have previously been tried.

Choosing a good explanation involves coping with several
kinds of uncertainty. First, the controller does not know
how the attacker is likely to behave. We handle this uncer-
tainty by making assumptions about what the attacker is
more likely to know, assuming that his behavior is limited
to attacks he knows how to carry out, and otherwise mak-
ing no assumption about what attacks he is likely to choose.
We identify a set of kinds of vulnerability that the attacker
might exploit, e.g., attacks against every host operating sys-
tem of a particular kind, or attacks against every component
of a replication group. We assume that an explanation need-
ing more kinds of exploits is less likely. Therefore, a good
explanation is one that needs the fewest kinds of attacker
exploits.

Second, the controller does not know which inputs are ac-
curate and which are lies created by the attacker, sent from
corrupt components. We handle this by proving theorems: a
component is corrupt if it is necessarily corrupt in every pos-
sible attack consistent with the inputs and a given number
of exploits.

Third, the set of inputs may be logically inconsistent. We
handle this by discarding inputs until consistency is reached:
an input contradicted by a later input from the same source
will be discarded, and inputs that show the least coher-
ence [6] with the rest may be discarded.

4. EFFECTIVENESS OF THE DEFENSE

If the controller is automated, a key question is: how ef-
fective is the defense it provides? Although there are many
ways to measure effectiveness, one important measurement
is of the worst case: given a set of vulnerabilities to exploit,
what is the greatest damage the attacker can inflict? Be-
cause an automated controller is entrusted with disabling
components that it interprets to be corrupt, it may be pos-
sible for a clever attacker to trick the controller into helping
the attack. A worst-case analysis of the defense puts a limit
on the attacker’s ability to do that.

We have done rudimentary work on two kinds of analy-
sis. First, we have run simulations of systems under attack,
modeled at the level of abstraction described in this paper.
It may be possible to estimate the worst case using many
randomly chosen simulation runs.

Second, we have done a game-theoretic analysis of a spe-
cial case of the controllers described in this paper [7]. It may
be possible to generalize that analysis.

5. CONCLUSION

This paper summarizes some recent work at BBN toward
automating the defense of computer systems against ma-
licious attack. Our goal is to encode knowledge we have
gained while building and using cyber-defenses manually
into an algorithm that can control such defenses automat-
ically. Formulating such an algorithm has required us to
specify how a variety of defense mechanisms can be inte-
grated, and their behavior reasoned about. This specifica-
tion treats the interaction between the mechanisms and their
controller at an abstract level. We believe that reasoning at
this level of abstraction contributes to the intelligent use of
information for cyber-security.

6. REFERENCES

[1] B. Blakely. The emperor’s old armor. In New Security
Paradigms Workshop, pages 216, Sept. 1996.

[2] J. Chong et al. Survivability architecture of a
mission-critical system: The DPASA example. In
Comp. Security Applications Conf., Dec. 2005.

[3] S. Kent. On the trail of intrusions into information
systems. IEEE Spectrum, Dec. 2000.

[4] P. G. Neumann and P. A. Porras. Experience with
EMERALD to date. In Proc. 1st Usenixz Workshop on
Intrusion Detection and Network Monitoring, Apr.
1999.

[5] SourceFire. Snort: the de facto standard for intrusion
detection. Internet URL http://snort.org, 2008.

[6] P. Thagard and K. Verbeurgt. Coherence as constraint
satisfaction. Cognitive Science, 22:1-24, 1998.

[7] F. Webber et al. A model of quarantine in
cyber-defense. Technical Report ITUA Validation
Report, Chapter 5, F30602-00-C-0172, BBN
Technologies, 2004.

[8] F. Webber, P. Pal, et al. Defense-enabled applications.
In DARPA Info. Survivability Conf. and Expo., May
2001.

